Elementy, Które Będziesz Potrzebować:
- Raspberry Pi Pico
- Czujnik wilgotności gleby
- Wyświetlacz LCD 2×16
- konwerter I2C dla LCD 2×16
- Przewody połączeniowe
- Płytka stykowa
Połączenia:
- Raspberry Pi Pico – Pin 1 (SDA) -> LCD 2×16 – SDA
- Raspberry Pi Pico – Pin 2 (SCL) -> LCD 2×16 – SCL
- Raspberry Pi Pico – Pin 39 (VSYS) -> LCD 2×16 – VCC
- Raspberry Pi Pico – Pin 38 (GND) -> LCD 2×16 – GND
- Raspberry Pi Pico – Pin 26 (GPIO26) -> Czujnik wilgotności gleby – A0 (data)
- Raspberry Pi Pico – Pin 39 (VSYS) -> Czujnik wilgotności gleby – VCC
- Raspberry Pi Pico – Pin 38 (GND) -> Czujnik wilgotności gleby – GND
Biblioteki do Instalacji:
- I2C_LCD_driver (kod w dalszej części artykułu)
Kod dla Raspberry pi pico
Zapisz ten kod jako: main.py
# -*- coding: utf-8 -*-
from machine import ADC, Pin, I2C
from time import sleep_ms
import I2C_LCD_driver
# Konfiguracja pinów
A0_PIN = 26
# Inicjalizacja ADC
adc = ADC(Pin(A0_PIN))
lcd = I2C_LCD_driver.lcd()
# Wartości kalibracyjne
min_moisture = 0
max_moisture = 65535
read_delay = 0.1 # opóźnienie między odczytami
while True:
moisture = (max_moisture - adc.read_u16()) * 100 / (max_moisture - min_moisture)
# Wyświetl wartości na ekranie LCD
lcd.lcd_display_string("Wilgotnosc gleby", 1)
lcd.lcd_display_string(" {:.2f}%".format(moisture), 2)
# Wypisz wartości na konsoli
print("Wilgotność gleby: {:.2f}% (ADC: {})".format(moisture, adc.read_u16()))
sleep_ms(int(read_delay * 1000)) # opóźnienie między odczytami
Biblioteka dla ekranu LCD 2×16
Ten kod zapisz jako: I2C_LCD_driver.py
# -*- coding: utf-8 -*-
# i2c bus (0 -- original Pi, 1 -- Rev 2 Pi)
I2CBUS = 0
# LCD Address
ADDRESS = 0x27
from machine import Pin, I2C
from time import sleep
i2c = I2C(0, scl=Pin(1), sda=Pin(0), freq=100000)
class i2c_device:
def __init__(self, addr, port=I2CBUS):
self.addr = addr
self.bus = I2C(port, scl=Pin(1), sda=Pin(0), freq=400000)
# Write a single command
def write_cmd(self, cmd):
self.bus.writeto(self.addr, bytes([cmd]))
sleep(0.0001)
# commands
LCD_CLEARDISPLAY = 0x01
LCD_RETURNHOME = 0x02
LCD_ENTRYMODESET = 0x04
LCD_DISPLAYCONTROL = 0x08
LCD_CURSORSHIFT = 0x10
LCD_FUNCTIONSET = 0x20
LCD_SETCGRAMADDR = 0x40
LCD_SETDDRAMADDR = 0x80
# flags for display entry mode
LCD_ENTRYRIGHT = 0x00
LCD_ENTRYLEFT = 0x02
LCD_ENTRYSHIFTINCREMENT = 0x01
LCD_ENTRYSHIFTDECREMENT = 0x00
# flags for display on/off control
LCD_DISPLAYON = 0x04
LCD_DISPLAYOFF = 0x00
LCD_CURSORON = 0x02
LCD_CURSOROFF = 0x00
LCD_BLINKON = 0x01
LCD_BLINKOFF = 0x00
# flags for display/cursor shift
LCD_DISPLAYMOVE = 0x08
LCD_CURSORMOVE = 0x00
LCD_MOVERIGHT = 0x04
LCD_MOVELEFT = 0x00
# flags for function set
LCD_8BITMODE = 0x10
LCD_4BITMODE = 0x00
LCD_2LINE = 0x08
LCD_1LINE = 0x00
LCD_5x10DOTS = 0x04
LCD_5x8DOTS = 0x00
# flags for backlight control
LCD_BACKLIGHT = 0x08
LCD_NOBACKLIGHT = 0x00
En = 0b00000100 # Enable bit
Rw = 0b00000010 # Read/Write bit
Rs = 0b00000001 # Register select bit
class lcd:
#initializes objects and lcd
def __init__(self):
self.lcd_device = i2c_device(ADDRESS)
self.lcd_write(0x03)
self.lcd_write(0x03)
self.lcd_write(0x03)
self.lcd_write(0x02)
self.lcd_write(LCD_FUNCTIONSET | LCD_2LINE | LCD_5x8DOTS | LCD_4BITMODE)
self.lcd_write(LCD_DISPLAYCONTROL | LCD_DISPLAYON)
self.lcd_write(LCD_CLEARDISPLAY)
self.lcd_write(LCD_ENTRYMODESET | LCD_ENTRYLEFT)
sleep(0.2)
# clocks EN to latch command
def lcd_strobe(self, data):
self.lcd_device.write_cmd(data | En | LCD_BACKLIGHT)
sleep(.0005)
self.lcd_device.write_cmd(((data & ~En) | LCD_BACKLIGHT))
sleep(.0001)
def lcd_write_four_bits(self, data):
self.lcd_device.write_cmd(data | LCD_BACKLIGHT)
self.lcd_strobe(data)
# write a command to lcd
def lcd_write(self, cmd, mode=0):
self.lcd_write_four_bits(mode | (cmd & 0xF0))
self.lcd_write_four_bits(mode | ((cmd << 4) & 0xF0))
# write a character to lcd (or character rom) 0x09: backlight | RS=DR<
# works!
def lcd_write_char(self, charvalue, mode=1):
self.lcd_write_four_bits(mode | (charvalue & 0xF0))
self.lcd_write_four_bits(mode | ((charvalue << 4) & 0xF0))
# put string function with optional char positioning
def lcd_display_string(self, string, line=1, pos=0):
if line == 1:
pos_new = pos
elif line == 2:
pos_new = 0x40 + pos
elif line == 3:
pos_new = 0x14 + pos
elif line == 4:
pos_new = 0x54 + pos
self.lcd_write(0x80 + pos_new)
for char in string:
self.lcd_write(ord(char), Rs)
# clear lcd and set to home
def lcd_clear(self):
self.lcd_write(LCD_CLEARDISPLAY)
self.lcd_write(LCD_RETURNHOME)
# define backlight on/off (lcd.backlight(1); off= lcd.backlight(0)
def backlight(self, state): # for state, 1 = on, 0 = off
if state == 1:
self.lcd_device.write_cmd(LCD_BACKLIGHT)
elif state == 0:
self.lcd_device.write_cmd(LCD_NOBACKLIGHT)
# add custom characters (0 - 7)
def lcd_load_custom_chars(self, fontdata):
self.lcd_write(0x40);
for char in fontdata:
for line in char:
self.lcd_write_char(line)
Uwaga! Wszystkie kody muszą zostać zapisane na Raspberry pi pico, aby projekt działał poprawnie!
Nie wiesz jak zapisać kod na Raspberry pi pico, zobacz ten poradnik.
Uruchamianie Programu:
- Uruchom program w środowisku Thonny na Raspberry Pi Pico.
- Odczekaj chwilę, aż czujnik zacznie zbierać dane.
- Na wyświetlaczu LCD powinno pojawić się informacja o wilgotności gleby.
Projekt ten stanowi świetny przykład wykorzystania Raspberry Pi Pico w połączeniu z czujnikiem wilgotności gleby do monitorowania warunków glebowych. Mikrokontroler umożliwia łatwe zbieranie i prezentację danych, a wyświetlacz LCD pozwala na wygodne odczytywanie wyników pomiarów. W ten sposób, projekt ten może być używany w różnych zastosowaniach rolniczych i ogrodniczych, pomagając monitorować i utrzymywać optymalne warunki dla roślin.